.ﬁ smg

.-
\ -
—r
A - A
7t
. \

Ed Barnard, ¥ @ewbarnard

Image fronﬁny personal copy of “Cray in Chippg@wa Falls” by Lee Friedla

“ "0 &

Why Are We Here”

 Understand why it is so important — and difficult —
to get it right

* Foundation: Two skKills
* Obtaining randomness

* Encrypt and decrypt a string

Getting it Right

Never Roll Your Own
Encryption! But...

Third-party integrations may require you to do so

You may not have newer, more modern PHP
libraries/extensions in production

Your legacy code base may already contain “roll
your own encryption”

Web services: Server and client may need access
to same library

The OpenSSL Library/
Extension

* Using OpenSSL still means you are “rolling your
own” cryptography!

* OpenSSL has only low-level tools:
* Encrypt, Decrypt
« HMAC

* |t's awfully easy to use these low-level functions
incorrectly

Getting it Wrong
o

W

S
In July 2015, a group calling itself "The Impact T 00 ~r data of Ashley Madison, a
commercial website billed as enabling extrs & .« group copied persanal
information about the site's user base \0 . release users' names and persanally
identifying information if Ashley *” e «mmediately shut down. On 18 and 20
August, the group leaked r .wytes of company data, including user details.

Ashley Madison data breach

From Wikipedia, the free encyclopedia

Because of the site” o ting users' personal information — including real names,

home address e ¢ and credit card transaction records — many users feared being
publicly = 9 v

o

Why are you Encrypting”

* Data storage and retrieval
* Encrypt now for later retrieval/decryption
* Easier because you control both ends

* Transmitting information

* More difficult because you only control one end
of transaction

The Problem

* You can't know if you got it right until you decrypt
the string

e Success: Great. Done

* [all:
You have no way to know what went wrong!

Encryption is Opague by
Design
Did you call the decryption function correctly?

Do you have the right secret key”

Did you unpack/transform/transmit the secret key
correctly?

Did your encrypted string get truncated or mangled?
Was the encryption wrong to begin with?

You don’t even know where to start looking!

My Frustration: Web Service

* Server-side encryption responding correctly to
requests from my development environment

* Production rejecting all client requests, claiming
invalid encryption

The Cause

Production mbstring out of date

The development environment had been updated, with
newer mbstring, when installing PHPUnNIt dependencies

We don't run PHPUnNIt in production, so did not do that
dependency update in production

| was using mbstring to chop apart raw binary secret
keys

Feature tests all ran pertectly, because same mbstring
used round trip

Diagnosing the Problem

* Dumped out all intermediate encryption steps as
hex and baseb4

* All looked fine in dev environment (no surprise
given that dev environment was working)

* Dumping steps from production showed
unexpected strings of zeroes

* [racked this down to mbstring mangling the secret
key

| essons Learneao

Working with encryption is tough by design

When something goes wrong, no information leaked as to
what went wrong

Why? We don’t want to guide our attacker in breaking our
security

Unfortunately here you are the attacker trying to figure
out how to make it work

Take a careful look at all dependencies (libraries,
extensions, OS packages) across all environments

Obtaining
Randomness

Randomness

You need randomness because you need to keep secrets
It a secret is easy to guess, it's not much of a secret

The measure of randomness is entropy

Pick a number between 1 and 107

 Daughter would always pick 7 because it is her lucky
number

 Not much uncertainty (entropy) in her “random” choice

Sixteen Million Model T
Fords

224 = 16,777,216 (~24
bits entropy)

A few color choices: 2-3

bits entropy o B
A

\,‘ '3&9

‘Any customer can have \}§
a car painted any color A
that he wants so long as it
s black.” — Henry Ford

Zero entropy in the color o = A
choice e

.'\-' by . ."Q A f
. (g WO 0 LT, 1
{ Py RS 'l"l’-._;"' -~
- : PR VY e AT S
T RAPTose TR TR
| || | . . W- .
e Y] " A LTI T AW 7 & T - 3 AT
R b g S T A e I e B o S T e T
. j';.‘"'f'. J,.’ (‘_;’. ':’_‘.‘4.‘;:20;.‘..: i ._“ ?_“.‘,(‘N‘\ R o l\.,,‘p_", AT A g . Bty
AN LR o WS AR AT Ay SUANTIT A (e S - e ‘% Py AL NS LRSS
r ot R T P P .“.l g et S A U A T T e A AP A TR = BN

4 T ' (el) AN (Yb\
," .‘lu.-

AN

v Ima

:’;‘.'

3 TS

v ’
i A AT YA S i
; 5 N

| ess Randomness

Pick a number between 1 and 10, but tend to pick
even numbers

English-language text
A more frequent than Z

 TH (this) more frequent letter combination than
TQ (outquote)

* English-language text contains 1.5-2 bits of
entropy per letter

A Random Model T

"

Using Randomness

Real example: AES encryption with 256-bit keys in
CBC mode

Need 256-bit secret key
Begin with password 123456 (don't do this)

Be more secure! Use password 12345678

Secret Key (Don't Do This)

* Run 12345678 through SHA-256 and you have a

250-Dbit secret key:
$secretKey = hash(‘sha256’, ‘12345678, true);

* AES works just fine with your 256-bit derived
$secretKey

* Anyone so stupid as to use 12345678 as thelir
encryption password?

* All experienced attackers know the answer is YES!

What's the Point” Entropy

* When encryption requires something that Is
* “random” or “unguessable”

* “X" number of bits long

* That means you require that many bits of entropy

12345678

Given that 12345678 is on top-ten list of known
passwords, you have 71-2 bits of entropy, not the
expected 256 bits of entropy

The sha256 function does not increase the entropy
Your attacker only needs to guess the 12345678
Would an attacker check for something so obvious? Yes

 You can stretch your 2 bits of entropy to a 256-bit
value but it’s still only 2 bits of entropy

PHP Bandom Number
sSources Fall

e Most PHP random-number sources have Issues
with predictability:

Don’t use any of these functions
as sources of randomness.
+ rand() Not for cryptography,
not for secret tokens,
not for anything that should
be unpredictable.

e unigid()

e mt_rand()

e openssl_random_pseudo_bytes()

Linux: Use /dev/urandom

* On Linux systems, the best source of randomness
comes from the Linux kernel as the
/dev/urandom device

* Thisis /dev/urandom with a “u” not
/dev/random without the “u” (both devices exist)

How to use /dev/urandom

« For PHP 5.x use https://github.com/paragonie/
random_compat

« PHP 7.x has built-in functions (I'm not there yet)

 PHP mcrypt extension’s function
mcrypt_create_1iv() can draw from

/dev/urandom

 The mcrypt detault changes between PHP versions;
be sure tell it to use the right source of randomness

https://github.com/paragonie/random_compat
https://github.com/paragonie/random_compat

Conflicted Information

DO not use mcrypt extension tor cryptography. It
nas no active developer support even though it
remains available for PHP 4.x, 5.x, 7.X

However, mcrypts mcrypt_create_iv() may be

your best-available source of randomness,
because it gives you access to /dev/urandom

"Random” vs. “Urandom’

» /dev/random (without the “u”) is a “blocking”
device unsuitable for web requests

» /dev/urandom is non-blocking, therefore suitable
for web requests

» /dev/random will hang when it needs to obtain
more randomness: Bad for web requests

Example

e $secretKey = mcrypt_create_iv(32,
MCRYPT_DEV_URANDOM) ;

e First parameter is number of random bytes you want: 32
bytes is 256 bits

e This gives you 256 bits of entropy, which is what you want
e Use MCRYPT_DEV_URANDOM not MCRYPT_DEV_RANDOM

 Both sender and receiver need the above secret key; share
INn such a way there is no possibility of attacker obtaining/
observing $secretKey

Example: Session Token

* (Goal: 128-bits of entropy, per Cryptographic
Engineering

* Create an unguessable token

* Upon seeing several tokens, no attacker can
guess, predict, or generate future tokens

* Use printable characters so token can be
passed as part of web URL (query string
parameter)

Roll Your Own

$random = mcrypt_create_iv(16,
MCRYPT_DEV_URANDOM) ;

$token = substr(base64_encode($random,
0, 22);

$token = str_replace([‘/¢, ‘+’], [‘-¢,
‘_’], $token);

Use random_compat

17
"require": {
"php" : "~5.5|~7.0",
"paragonie/random_compat": "~2.0"
¥,
"require-dev": {
"phpunit/phpunit" : "~4.0||~5.0",
"squizlabs/php_codesniffer": "~2.3"
¥,

"autoload": {

Use random_compat (2)

namespace InboxDollars\GenerateToken;

class GenerateToken

{

public function generateToken()

{

return substr(str_replace(['+', '/'], ['=', '_'],

base64_encode(random_bytes(16))), 0, 22);

ENcrypting anao
Decrypting a String

Cryptographic Decisions

* Before making cryptographic decisions, find out
whether you have libraries available to make the
correct decisions for you

e Our example:
* Web services
* AES encryption in CBC mode with 256-bit key

* Mobile app uses this method in talking to server

Cryptographic Integrity

Encryption is pointless (false sense of security)
unless you can guarantee the integrity of the
transmission

It an attacker modifies the encrypted message, you
need to detect that fact

HMAC: Hash-based Message Authentication Code

HMAC requires another 256-bit secret key

INnitialization Vector

Our mode of encryption requires a random
‘starting point”

It the same text is encrypted twice with the same
secret key, the encrypted string needs to be
different

Starting point is called the Initialization Vector or 1V

[V'is 16 bytes (128 bits)

Key Creation

* We need two secret keys
* One for encryption
* One for HMAC authentication

 Each key needs to have 256-bits of entropy per
our cryptographic design decision

Key Creation (2)

* \We pull 64 bytes (512 bits) from our source of
randomness

e Qur source of randomness needs to be a

Cryptographically Secure Pseudo Random Number
Generator (CSPRNG)

* We are using a wrapper for /dev/urandom as our
CSPRNG

e $largeKey = base64_encode(
mcrypt_create_iv(64, MCRYPT_DEV_URANDOM));

Key Creation (3)

Both sender and receiver
need to securely retain copies
of our $largeKey

Remarkably tricky

Do we send encryption key via
un-encrypted email?

Carrier pigeon? (public
domain photo via wiki
commons shows WWI soldier
and carrier pigeon)

Key Derivation

We have a large key stored as a base64-encoded entity

 Decode the entity |$raw =

into raw data base64_decode($largeKey,
true);

 Jake the left half,

the first 32 bytes |$left = mb_substr($raw, 0, 32,
(256 bits) ‘8bit’);

* Take the right halt,
the second 32
bytes $right = mb_substr($raw, 32, 32,

‘8bit’);

Key Derivation (2)

We have a large key stored as a base64-encoded entity

* Create the $encryptionKey = hash(‘sha256’,

encryption $left, true);
password as

SHA-256 of the
left half

$authenticationKey =

* Create the hash(‘sha256’, $right, true);
authentication
(HMAC) password
as SHA-256 of the
right half

What did we accomplish”

 SHA does not add any security to the encryption

* Neither the encryption key nor the HMAC
authentication key are ever stored, anywhere

* |In a mobile app, this approach might make it more
difficult to extract the secret key

 We're storing the 512-bit large key, and derive the
two 256-bit keys as needed

Authentication (HMAC)

* There are long discussions around whether to
encrypt-then-authenticate or authenticate-then-
encrypt

* Let's just get to the code

O 00 dJ O U &6 W N

=
= o

ENcrypt an Array

$data = array('a' => 1, 'b' => 2);

$message = json_encode($data);

$initializationVector = mcrypt_create_iv(16, MCRYPT_DEV_URANDOM) ;

$cipherText = openssl_encrypt($message, 'aes-256-cbhc’,
$encryptionkKey, 1, $initializationVector);

$toCover = $initializationVector . $CipherText;

$hmac = hash_hmac('sha256', $toCover, $authenticationKey, true);
$result = baseb4 encode($hmac) . ':'
baseb4 encode($initializationVector) . ':°

baseb4_encode($cipherText);

10
11
12
13
14
15
16
17
18
19
20

Decrypt a String (1)

function doDecryptResult($result, $authenticationKey,

$encryptionKey) {
$result = (string)$result;
explode(':', $result);

$results
if (3 !== count($results)) {
return 'Invalid input string’';
}
$hmac = base64 decode($results[0]);
$initializationVector = base64 decode($results[1]);
$cipherText = base64_decode($results[2]);
$toCover = $initializationVector . $cipherText;
$calculated = hash_hmac('sha256', $toCover,
$authenticationKey, true);

21
22
23
24
25
26
27
28
29
30
31

Decrypt a String (2)

if (!hash_equals($hmac, $calculated)) {
return 'Encrypted string not valid';
+
$message = openssl_decrypt($cipherText, 'aes-256-chc’,
$encryptionKey, 1, $initializationVector);
$unpacked = json_decode($message, true);
if (null === $unpacked) {
return 'Decrypted string not JSON';
+

return (array)$unpacked;

r -
yan o3 Following
berypt

one of the best slides ive ever made

Solution

Give up

" e TOPH4E00N

3:53 PM - 30 Sep 2016

23 174 ¥ 4907

summary

Do what you need to do to get it right
(Failure is always an option)

Understand randomness, and how to get enough
of It

Understand encrypt/HMAC process

Expect to do your homework. Failure can be more
than merely embarrassing

Thank You

Additional Reading: http://
otscripts.com/using-encryption-in-
php-madison-php-2016/

Ed Barnard, InboxDollars.com

ewbarnard@embargmail.com

Twitter @ewbarnard

Slide Deck: (see joind.in)

Rate this talk: https://joind.in/talk/
49812

http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://InboxDollars.com
mailto:ewbarnard@embarqmail.com
https://twitter.com/ewbarnard
http://joind.in
https://joind.in/talk/49812
https://joind.in/talk/49812

