
Using Encryption in PHP

Ed Barnard, @ewbarnard
Image from my personal copy of “Cray in Chippewa Falls” by Lee Friedlander

Why Are We Here?

• Understand why it is so important — and difficult —
to get it right

• Foundation: Two skills

• Obtaining randomness

• Encrypt and decrypt a string

Getting it Right

Never Roll Your Own
Encryption! But…

• Third-party integrations may require you to do so

• You may not have newer, more modern PHP
libraries/extensions in production

• Your legacy code base may already contain “roll
your own encryption”

• Web services: Server and client may need access
to same library

The OpenSSL Library/
Extension

• Using OpenSSL still means you are “rolling your
own” cryptography!

• OpenSSL has only low-level tools:

• Encrypt, Decrypt

• HMAC

• It’s awfully easy to use these low-level functions
incorrectly

Getting it Wrong

Don’t b
ecome famous this way!

Why are you Encrypting?
• Data storage and retrieval

• Encrypt now for later retrieval/decryption

• Easier because you control both ends

• Transmitting information

• More difficult because you only control one end
of transaction

The Problem

• You can’t know if you got it right until you decrypt
the string

• Success: Great. Done

• Fail:  
You have no way to know what went wrong!

Encryption is Opaque by
Design

• Did you call the decryption function correctly?

• Do you have the right secret key?

• Did you unpack/transform/transmit the secret key
correctly?

• Did your encrypted string get truncated or mangled?

• Was the encryption wrong to begin with?

• You don’t even know where to start looking!

My Frustration: Web Service

• Server-side encryption responding correctly to
requests from my development environment

• Production rejecting all client requests, claiming
invalid encryption

The Cause
• Production mbstring out of date

• The development environment had been updated, with
newer mbstring, when installing PHPUnit dependencies

• We don’t run PHPUnit in production, so did not do that
dependency update in production

• I was using mbstring to chop apart raw binary secret
keys

• Feature tests all ran perfectly, because same mbstring
used round trip

Diagnosing the Problem
• Dumped out all intermediate encryption steps as

hex and base64

• All looked fine in dev environment (no surprise
given that dev environment was working)

• Dumping steps from production showed
unexpected strings of zeroes

• Tracked this down to mbstring mangling the secret
key

Lessons Learned
• Working with encryption is tough by design

• When something goes wrong, no information leaked as to
what went wrong

• Why? We don’t want to guide our attacker in breaking our
security

• Unfortunately here you are the attacker trying to figure
out how to make it work

• Take a careful look at all dependencies (libraries,
extensions, OS packages) across all environments

Obtaining
Randomness

Randomness
• You need randomness because you need to keep secrets

• If a secret is easy to guess, it’s not much of a secret

• The measure of randomness is entropy

• Pick a number between 1 and 10?

• Daughter would always pick 7 because it is her lucky
number

• Not much uncertainty (entropy) in her “random” choice

Sixteen Million Model T
Fords

• 224 = 16,777,216 (~24
bits entropy)

• A few color choices: 2-3
bits entropy

• “Any customer can have
a car painted any color
that he wants so long as it
is black.” — Henry Ford

• Zero entropy in the color
choice

Image public domain via Wiki Commons

Less Randomness
• Pick a number between 1 and 10, but tend to pick

even numbers

• English-language text

• A more frequent than Z

• TH (this) more frequent letter combination than
TQ (outquote)

• English-language text contains 1.5-2 bits of
entropy per letter

A Random Model T

Using Randomness

• Real example: AES encryption with 256-bit keys in
CBC mode

• Need 256-bit secret key

• Begin with password 123456 (don’t do this)

• Be more secure! Use password 12345678

Secret Key (Don’t Do This)
• Run 12345678 through SHA-256 and you have a

256-bit secret key: 
$secretKey = hash(‘sha256’, ‘12345678’, true);

• AES works just fine with your 256-bit derived
$secretKey

• Anyone so stupid as to use 12345678 as their
encryption password?

• All experienced attackers know the answer is YES!

What’s the Point? Entropy

• When encryption requires something that is

• “random” or “unguessable”

• “x” number of bits long

• That means you require that many bits of entropy

12345678
• Given that 12345678 is on top-ten list of known

passwords, you have 1-2 bits of entropy, not the
expected 256 bits of entropy

• The sha256 function does not increase the entropy

• Your attacker only needs to guess the 12345678

• Would an attacker check for something so obvious? Yes

• You can stretch your 2 bits of entropy to a 256-bit
value but it’s still only 2 bits of entropy

PHP Random Number
Sources Fail

• Most PHP random-number sources have issues
with predictability:

• uniqid()

• rand()

• mt_rand()

• openssl_random_pseudo_bytes()

Don’t use any of these functions
as sources of randomness.

Not for cryptography,
not for secret tokens,

not for anything that should
be unpredictable.

Linux: Use /dev/urandom

• On Linux systems, the best source of randomness
comes from the Linux kernel as the  
/dev/urandom device

• This is /dev/urandom with a “u” not  
/dev/random without the “u” (both devices exist)

How to use /dev/urandom
• For PHP 5.x use https://github.com/paragonie/

random_compat

• PHP 7.x has built-in functions (I’m not there yet)

• PHP mcrypt extension’s function
mcrypt_create_iv() can draw from  
/dev/urandom

• The mcrypt default changes between PHP versions;
be sure tell it to use the right source of randomness

https://github.com/paragonie/random_compat
https://github.com/paragonie/random_compat

Conflicted Information

• Do not use mcrypt extension for cryptography. It
has no active developer support even though it
remains available for PHP 4.x, 5.x, 7.x

• However, mcrypt’s mcrypt_create_iv() may be
your best-available source of randomness,
because it gives you access to /dev/urandom

“Random” vs. “Urandom”

• /dev/random (without the “u”) is a “blocking”
device unsuitable for web requests

• /dev/urandom is non-blocking, therefore suitable
for web requests

• /dev/random will hang when it needs to obtain
more randomness: Bad for web requests

Example
• $secretKey = mcrypt_create_iv(32,
MCRYPT_DEV_URANDOM);

• First parameter is number of random bytes you want: 32
bytes is 256 bits

• This gives you 256 bits of entropy, which is what you want

• Use MCRYPT_DEV_URANDOM not MCRYPT_DEV_RANDOM

• Both sender and receiver need the above secret key; share
in such a way there is no possibility of attacker obtaining/
observing $secretKey

Example: Session Token
• Goal: 128-bits of entropy, per Cryptographic

Engineering

• Create an unguessable token

• Upon seeing several tokens, no attacker can
guess, predict, or generate future tokens

• Use printable characters so token can be
passed as part of web URL (query string
parameter)

Roll Your Own

$random = mcrypt_create_iv(16,
MCRYPT_DEV_URANDOM);

$token = substr(base64_encode($random,
0, 22);

$token = str_replace([‘/‘, ‘+’], [‘-‘,
‘_’], $token);

Use random_compat

Use random_compat (2)

Encrypting and
Decrypting a String

Cryptographic Decisions
• Before making cryptographic decisions, find out

whether you have libraries available to make the
correct decisions for you

• Our example:

• Web services

• AES encryption in CBC mode with 256-bit key

• Mobile app uses this method in talking to server

Cryptographic Integrity
• Encryption is pointless (false sense of security)

unless you can guarantee the integrity of the
transmission

• If an attacker modifies the encrypted message, you
need to detect that fact

• HMAC: Hash-based Message Authentication Code

• HMAC requires another 256-bit secret key

Initialization Vector
• Our mode of encryption requires a random

“starting point”

• If the same text is encrypted twice with the same
secret key, the encrypted string needs to be
different

• Starting point is called the Initialization Vector or IV

• IV is 16 bytes (128 bits)

Key Creation

• We need two secret keys

• One for encryption

• One for HMAC authentication

• Each key needs to have 256-bits of entropy per
our cryptographic design decision

Key Creation (2)
• We pull 64 bytes (512 bits) from our source of

randomness

• Our source of randomness needs to be a
Cryptographically Secure Pseudo Random Number
Generator (CSPRNG)

• We are using a wrapper for /dev/urandom as our
CSPRNG

• $largeKey = base64_encode( 
mcrypt_create_iv(64, MCRYPT_DEV_URANDOM));

Key Creation (3)
• Both sender and receiver

need to securely retain copies
of our $largeKey

• Remarkably tricky

• Do we send encryption key via
un-encrypted email?

• Carrier pigeon? (public
domain photo via wiki
commons shows WWI soldier
and carrier pigeon)

Key Derivation

• Decode the entity
into raw data

• Take the left half,
the first 32 bytes
(256 bits)

• Take the right half,
the second 32
bytes

$raw =
base64_decode($largeKey,
true);

$left = mb_substr($raw, 0, 32,
‘8bit’);

$right = mb_substr($raw, 32, 32,
‘8bit’);

We have a large key stored as a base64-encoded entity

Key Derivation (2)

• Create the
encryption
password as
SHA-256 of the
left half

• Create the
authentication
(HMAC) password
as SHA-256 of the
right half

$encryptionKey = hash(‘sha256’,
$left, true);

$authenticationKey =
hash(‘sha256’, $right, true);

We have a large key stored as a base64-encoded entity

What did we accomplish?
• SHA does not add any security to the encryption

• Neither the encryption key nor the HMAC
authentication key are ever stored, anywhere

• In a mobile app, this approach might make it more
difficult to extract the secret key

• We’re storing the 512-bit large key, and derive the
two 256-bit keys as needed

Authentication (HMAC)

• There are long discussions around whether to
encrypt-then-authenticate or authenticate-then-
encrypt

• Let’s just get to the code

Encrypt an Array

Decrypt a String (1)

Decrypt a String (2)

Summary
• Do what you need to do to get it right  

(Failure is always an option)

• Understand randomness, and how to get enough
of it

• Understand encrypt/HMAC process

• Expect to do your homework. Failure can be more
than merely embarrassing

Thank You
• Additional Reading: http://

otscripts.com/using-encryption-in-
php-madison-php-2016/

• Ed Barnard, InboxDollars.com

• ewbarnard@embarqmail.com

• Twitter @ewbarnard

• Slide Deck: (see joind.in)

• Rate this talk: https://joind.in/talk/
49812

http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://otscripts.com/using-encryption-in-php-madison-php-2016/
http://InboxDollars.com
mailto:ewbarnard@embarqmail.com
https://twitter.com/ewbarnard
http://joind.in
https://joind.in/talk/49812
https://joind.in/talk/49812

