What it was like programming
a first-generation computer

Ed Barnard (Ed#1)
@ewbarnard
InboxDollars

Computing Past: Mel, the Realest
Programmer of Al

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

Welcome! Today we’ll be learning what it was like programming a first-generation computer in the 1950s. This is the Librascope LGP-30, first shipped in
September of 1956. By the way, we’ll be counting Eds, and I’'m Ed #1.

http://www.computerhistory.org/revolution/early-computer-companies/5/116

AUTOMATTIC

Thanks to our

Sponsors! () Magento

MailChisp s DEVNET

Sensio = Microsoft

Creator of @ Symfony

0 Ao b |
o Lov From the Librascope
LGP-30 Schematics,

"drawn 4-12-56"

' (%)
"y . o¥ &
° . nall AL ¥ (56079
Our Timeline _ WA Al
vy 1 @
| . o
P—p— (r
s I
o Hacker Folklore (1982-83) —a | AA N Can)

® Vacuum Tube Computer
Programming (1956) @10 e swven
’:::‘v -\ﬁ‘-‘ow.
SEN N T T RO e

e Modern Times (2017)

® Video: Warming Up the LGP-30
(6:51 run time)

"L60-30 MATRIX DRIVER

LGP-30 Schematics: 2

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Was anyone here NOT programming computers 35 years ago? We'll first take a step back 35 years to see the context of our story. Then we’ll step back 60
years to see a first-generation computer and what it was like to program the thing. Then we’ll apply this perspective to our own careers today. Finally,
assuming WiFi works for us, | have a seven-minute video.

https://archive.org/details/bitsavers_royalPreciatics1959_26037699

Our Timeline

i
i

V!. 3
3%

SEAT-AN & Al-rie
IRt ¢ 2 2er s
_ =4, e
.",!1. ~’ 2
r " 7
m ’
¥ - N2
: J
201 o
282~ e
4 ” ”
i A
—
e R |
-
3 |
f s
-7 \l
o Mo
] v

ei
%

SiInalb

4 t.‘
neq I
NER: Ll

From the Librascope
LGP-30 Schematics

A g £
j F
”
274 M| seaven erd
J

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

First up: A bit of official hacker folklore.

https://archive.org/details/bitsavers_royalPreciatics1959_26037699

NTUNE AW M0 e

b Viageite st JENT Chrmmbbn o

Hacker Folklore: Dune

A beginning is the time for taking the most delicare
care that the balances are correct. This every sister of the
Bene Gesserit knows. To begin your study of the life of
Muad'Dib, then, take care that you first place him in his
time: born in the 57th year of the Padishah Emperor,
Shaddam 1V. And take the most special care that you
locate Muad'Dib in his place: the planet Arrakis. Do not
be deceived by the fact that he was born on Caladan and
lived his first fifieen years there. Arrakis, the planet
known as Dune, is forever his place.

—{rom ‘““Manual of Muad’'Dib"" by the Princess
Irulan

|mages scanned from my persona| collection Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

I’m going to hit you with some obscure cultural references. That’s part of hacker culture. Don’t worry, this is the only one that takes up a whole slide! So,
in talking about hacker folklore, we need to start with the opening words of Dune by Frank Herbert. The explanation is important for our story.

STUNEAF M Tt

Hacker Folklore (our story)

® Our story begins:
e Not 60 years ago with vacuum tubes, but
® A mere 35 years ago with a Best-Selling book

® A beginning is the time for taking the most
delicate care that the balances are correct

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

In the same way, it’s important to recognize that our story begins not 60 years ago with vacuum tubes, but a mere 35 years ago with a best-selling book.
Do take the most delicate care to understand the balances as we step back in time.

Real Men Don't
Eat Quiche (1982)

Real Men
Donlt Eat ® |n 1982, the “battle of the sexes” was raging

.
QuIChe ® This book poked fun at the macho concept of “Real Men,”
- contrasting them to men getting more out of life, the

I}‘(’\'h‘:;::"* “quiche eaters”

IsTruly

Masculine ® Quiche eater: A man who is a dilettante, a trend-chaser, an
Bruce Feirstein over-anxious conformist, one who eschews (or merely lacks)

llustrated by Lee Lorenz the traditional masculine virtues

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

35 years ago, back in 1982, the “battle of the sexes” was raging. This book was a best-seller all summer. This book poked fun at the macho concept of
“Real Men,” contrasting them to men getting more out of life, the “quiche eaters.” Quiche eater: A man who is a dilettante, a trend-chaser, an over-anxious
conformist, one who eschews (or merely lacks) the traditional masculine virtues.

Hacker Folklore: Real Programmers Don't
Use Pascal (1983)

e When Ed Post of Tektronix (Ed #2) continued the joke, Back in the good old days, the
"Golden Era” of computers, it
® The phrase “Real Men” became “Real Programmers” was easy to separate the
adults from the children,
® Those who used friendlier programming languages sometimes called “Real Men”
such as Pascal became the “Quiche Eaters” and “Quiche Eaters” in the
literature...

® Published in Datamation magazine, July 1983

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Ed Post of Tektronix (Ed #2) continued the joke. He changed the phrase from “Real Men” to “Real Programmers” and spun a delightful tale in honor of
computer programmers. Those who used friendlier programming languages such as Pascal became the “Quiche Eaters.” His essay became a Letter to the
Editor of Datamation magazine. We passed the magazine around the office, as I’m sure other people did too, and it became part of our hacker folklore.

University of Washington (1977)

e Department of Engineering: | began with
FORTRAN (tested-out), continued with CDC
assembly language

e Department of Computer Science: | began
with Pascal

e Of the two, it's clearly the Department of
Engineering that existed to get the job

done

- - . >
Photo: University of Washington School of Public Health, http://deohs.washington.edu/seattle-how-get-here-what-do

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

There really was a distinction between Real Programmers and Quiche Eaters at the time. Here’s the University of Washington as an example. | transferred in
to the Department of Engineering and later into Computer Science. | already knew FORTRAN, so they let me take the final exam to prove it, and enroll in
Assembly Language. The Computer Science department began with Pascal. Of the two, it’s clearly the Department of Engineering that existed to get the job
done.

http://deohs.washington.edu/seattle-how-get-here-what-do

Culture Wars Continue (2005) e »

Advanced @

Programming
nthe UNIX

IVIFOTHTICT] conrurer voux wans Bl muat schuery (YOURE ONE OF THOSE)

X —

PROGRAMMING
LANGUAGE

Second Edit 5 1T RICHT BEARD .. THOSE CONDESCENDING UNIX |
'—fkb o e SUSPENDERS COMPUTER USERS! y
 THERE, BUDDY N e e Zenbendi J
‘M: MG |[wERE's A Nicksy,
EXPRESSION) RID. GET YOUR-

\ | SELF A BETTER
COMPUTER

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Images scanned from my personal collection

The culture wars continue to this day, as you know. UNIX dates from the 1960s, and actual books from the 1970s. The definitive book on UNIX
programming, here on the left, came in 2005. There's a Dilbert cartoon on the front. | enlarged it so we can read the story.

Radio Shack
TRS-80 (1977)

® Job fears were real

® This was the first generation of
children with access to computers

e Teenagers potentially had equal
footing with adults in the job market

Photo: You Tube: https://i.ytimg.com/vi/wgKWV8C3e7M/maxresdefault.jpg

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is the Radio Shack TRS-80, which we all called the Trash 80. You can see the software library came in a collectible vinyl binder. That’s a floppy-

disk drive on the right.
Job fears were real because this was the first generation of children with access to computers. Teenagers potentially had equal footing with adults in the

job market.

https://i.ytimg.com/vi/wgKWV8C3e7M/maxresdefault.jpg

Washington State Data Processing
Service Center: A Mainframe Shop (1977)

7

- - X

® |BM came visiting to see how they "
closely-coupled their dual IBM

370/158 mainframes

® |BM produced a Case Study
brochure to honor the occasion

|mages scanned from my personal collection Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Centralized computing was a necessity, since IBM and their room-sized mainframes were the major player. You're looking at the Washington State Data
Processing Service Center with a pair of IBM 370/158s in the background. This was the computing resource for all of Washington State government.

The system programmers on the right did such an amazing job of closely-coupling their IBM 370 systems together, that IBM itself came to find out how
they did it. This is from the advertising brochure that IBM produced as a result. That’s the data center director on the left, my Dad.

CRAY-1 arrives at Daresbury Laboratory, UK (1979

eDuring this period, the Real Programmers were
the ones who understood computer
programming, and the Quiche Eaters were the
ones who didn't.

*The Real Programmer is in danger of becoming
extinct, being replaced by high-school students
playing Pac-Man with TRASH-80s!

eUnderstanding these differences gives these
kids something to aspire to, a role model.

L e M armert e e A S etees | e o N Seeee
P Ghar bt R B .S LARET S8 4Bt b

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Remember, the fears were real. We had the room-size mainframes and supercomputers on the one hand, and home computers on the other. That is

Seymour Cray in the center, the Father of Supercomputing. This is the background as Ed continues the story... During this period, the Real Programmers
were the ones who understood computer programming, and the Quiche Eaters were the ones who didn’t. The Real Programmer is in danger of becoming
extinct, being replaced by high-school students playing Pac-Man with TRASH-80s! Understanding these differences gives these kids something to aspire

to, a role model.

-]' Mostyn Lewis at

_Daresbury (1979)

e There is a clear need to point out
these differences:

EMPLOYEE

e Help employers of Real
IDENTIFICATION

Programmers realize why it

0742 would be a mistake to replace us
_EMPLOYEE NO.

e - ——- 7'SOC. SEC. NO.

Edward W. Barnard
NAME

rerd

e oA

b LA TR S o WPih T
A SIGNATURE

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Ed continues: There is a clear need to point out these differences: Help employers of Real Programmers to realize why it would be a mistake to replace the
Real Programmers on their staff with 12-year-old Pac-Man players (at a considerable salary savings).
That’s me in the middle. | stayed in contact with Mostyn Lewis, on the far left, for many years.

FORTRAN Coding Form (1970s)

® Real programmers use FORTRAN

® Quiche Eaters use PASCAL

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The easiest way to tell a Real Programmer from the crowd is by the programming language he or she uses. Real Programmers use FORTRAN. Quiche Eaters
use PASCAL. (Real Programmers actually talked in capital letters you understand.)

This is a pad of FORTRAN coding forms. You would write your program, in pencil, on the form and send it off for keypunching. Each row becomes one
punch card.

Pascal (1978)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Niklaus Wirth, the designer of PASCAL, was asked, "How do you pronounce your name?" He replied, "You can either call me by name, pronouncing it 'Veert,'
or call me by value, 'Worth." One can tell immediately from this comment that Niklaus Wirth is a Quiche Eater.
In other words, Real Programmers are serious, and don’t do cute.

FOoR AN ALN .
) L LI BLA I T 1RI TR LRLT ..,nmunn'.’rnrrn‘nrm'J
LA LI DL B R L R e . - e SRR N PR PR ST R R T)
SRIRRARRIARIRER IR 2ERY)) RRRNREIRERRRRRIAR! llu;lnllulnl

QRINRRR 2002022022 002N RN A AN RIAAN AP0 000
BRNIINIIDINNINANNNANINIR NNt 13 :::s::::::n:HnuLauxlu.

ihten teane e llul|((lNclthf|Hdltl‘

SIASALEEEINSSISS s NS)

l:tlllil LRLET LERY B LR R R ,uullANIHOCOHHIO!.IlllIY
m)H‘J;)n.'u-'r": ------- I ll'l:!ll‘lll”lll‘
{'Illlh.l.l'l'l'll'!'!lllall-I.'l.ul‘A ' FRARERRARRARRRRAEN RIS
| unnn R

Punch Card (1950s-1970s)

Real Programmers don’t need abstract concepts to get their jobs done. They
are perfectly happy with a keypunch, a FORTRAN IV compiler, and some pizza.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is a FORTRAN punch card. You can see the one line of code on the left, and the sequence number, that is, the line number, in the eight columns on
the right. That’s why we still try to keep the line length to 72 or 80 characters to this day. Real Programmers don’t need abstract concepts to get their jobs
done. They are perfectly happy with a keypunch, a FORTRAN IV compiler, and some pizza.

Tpwcal
Leres W

I~
$

QIRNasLTAY APCOEFSaI n L NS

151' B
e
L
A i o

| Pigwe £ Panching Poattbons s Cand

Punch Card Layout (1949)

Digits use one hole per character, letters use two, and special characters mostly use three

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Digits use one hole per character, letters use two, and special characters mostly use three. So, remember: If you can't do it in FORTRAN, do it in assembly
language. If you can't do it in assembly language, it isn't worth doing.

e ST NTUNE AW M0 e

Hacker Folklore: Our Context

e Fears for our jobs/occupations
e Culture wars

® What it means to be elite, a Real Programmer

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here’s the context for our story: We had fears for our jobs and occupations. The culture wars continued. We addressed those fears by explaining what it
means to be elite, a Real Programmer.

The Story of Mel

Posted to Usenet by its author, Ed Nather (Ed #3), May 1983

A recent article devoted to the macho side of programming
made the bald and unvarnished statement:

Real Programmers write in FORTRAN.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Mel Kaye (1956)

Back in the Good Old Days...

® The term “software” sounded funny

LIBRASCOPE'S MURAL ROOM Secwwe » wady hall for meophyts Real Computers were made out of drums

LG programusery e wiwk of Joly 14 Bluderss particpeting
this firet training school for LING-0 curtomers inclnded (seated 1 ta r)
! Hopper, Mary Cornell and Chuck Rue, Convalr-Fossne John °
Corkhill, Convair-3sa Diego; R J, Ditbize, Lk Aviaton; K. A Mes,
D D Pakbhurst C K Xioahime and bes 1, Ramwra, Coavalr-San
thu, George Kendrick, Conveir-Fomoss; Check Hay, Calech; and
Wiitam Claoton, Natioral Securily Aponcy. Sunang (F 1o r.) are Froa
Tlsanell, sloss netrortor snd sasbetarnt sales manaper of RogaloMeRes
ind Royal-McBee Appiications Engiteers Dod Mazdett, Jack Beks snd
Mt Xaye (Fhese by Dugean)

Real Programmers wrote in machine code

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Maybe they do now, in this decadent era of Lite beer, hand calculators, and "user-friendly" software but back in the Good Old Days, when the term
"software" sounded funny and Real Computers were made out of drums and vacuum tubes, Real Programmers wrote in machine code. Mel is on the back

right.

L]
Coding Sheet (1956)
L® =10 ouie SHEET Par_g R__ 6
| 200 M. Prosres Yo, /7. ¢ & Prepared by, T t.;,-[g Date a[z!(ﬂ
Provles Dara Tnevr i Svrrsvrive Tk
ol | 2 P =
™ .01 .. '
POPRPI [] - S EE— N —
2 I 0L .00 - NN AL Ave de
.,J. ~ il ..AC;GAQJJ;
PURPIIT T Y P] E TN ¢ ‘(I-p-f 4.0 d
3 & a3 T eeeel
e A bl eSS Cria T D
ey " (K3 B AT XA - P27
O osl . . wveeodl
-1__.4 0.3 ‘.'-%G'JOA)A'I’ Jito
NP A LT T Exit o d if T wsdep
PR TIPS W SR . B PRI 1TV 270 W A ,
N EERRNIPRESION W s U 2000 23'| 1ot ohif telf > B
Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Yes, Real Programmers wrote in machine code. Not FORTRAN. Not, even, assembly language. Machine Code. Raw, unadorned, inscrutable hexadecimal
numbers. Directly.

Coding Sheet (1956)
1ar=30 OCOTNG SIEXT Mage o of
Job No.______ Program Wo. s/ op Preparet by, Q{(T u“—(—ﬁﬁ.ﬁﬁl !
L8 7
Predles Dara Torpgr ™4 Susgcoye Track
Progras Drpot " Instrostton 15 Comtents of
9.5 .
&
T L}
A % -
: N 0,032 A.s¢0111") —
; 33 ez ol posdiwe g
I 3 21 3% 7,318 [t snss bove Foo wiy y Doy
T \ - v
+ 35 “u_'}‘; s 11' 0 (...',l.w,(3
j; Jé A5 6 35
4 S | A:o Pl M W24 sl 4 a3
A : L IRV, 5 -0 g
dinhadond ls ‘g#;‘{;a{"nm.o F. 0 derd
IR 1 U] NN T JE NN | U B PLY Y Drap ol et Py
e L1 y;o o 14"
e a Lo ~ b2 Hoe /. A dont sind bre Lo poscdov on
Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Lest a whole new generation of programmers grow up in ignorance of this glorious past, | feel duty-bound to describe, as best | can through the
generation gap, how a Real Programmer wrote code. I'll call him Mel, because that was his name.

Our Timeline

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Now we can get real.

https://archive.org/details/bitsavers_royalPreciatics1959_26037699

LGP-30: Royal Precision Electronic Computer (1955)

THE ROYAL PRECISION ELECTRONIC COMPUTTEN

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

The year is 1955, and it's time to introduce the Royal Precision Electronic Computer, the LGP-30.

LGP-30: Royal Precision Electronic Computer (1955)

® |ow Cost

® Small size... Mobile

e Simplified Programming
® large Memory

® Reliable Performance

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

It was low cost, with a retail price of $47,000. It was small, about the size of a desk. It weighed 800 pounds. It was mounted on heavy-duty castors so it
could be rolled across the floor. That made it portable. Wait until you find out what "simplified programming" means! The large memory was 4,096 words
of spinning drum memory.

http://archive.computerhistory.org/resources/text/Royal_McBee/RPC.LGP-30.1956.102646223.pdf

LGP-30 (1956)

<<

¢

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

It came with a chair, but the guy was probably optional. On the right is the main memory.

Museum LGP-30 (since ca. 1980)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnard

This in the Computing History Museum. The only I/O device was the electric typewriter you see here.

| B: Bring: Bring contents of location 0115 to the accumulator Cod i n g S h eet (1 956)

AN
|C. Clear: Store contents of the accumulat‘or |rlmemory, clearlcg the ac?mulatorl_._ P g
P: Print: Print an electric typewriter symbol.
The symbol is denoted by the track number part of the address in an instruction word.
When executing this command, the computer has complete control over the typewriter functions, including decimal digits, letters,
punctuation marks, shifts, tabs, carriage return and any other operation the typewriter can perform.

This permits complete flexibility in the format of the output, including simultaneous punching on tape, if desired

| T Em S
(4]
|I: Input: From the typewriter tt“" .
Vavaiu “ A r —
|H: Hold: Store to drum _— A S L7 TN
'
ya—— — . - — ——
T: Test: If-test jump g g xF.e 03 W T;'_n_r ot 2D @and
22 SO L A se el J
U: Unconditional jump: feee =~ ~—o.l | . YA (35 | Grio, T D vkl
The "else” part of the “if” T P 4 P>
it Lppeexail e P37
S: Subtract: Subtract the contents of location 0029 from " v oe e 1

. . T
the contents of the accumulator, and retain the difference |7 4_.2.2 o _o‘_._‘_'[: O v
in the accumulator

A’:.i oy e ’[.A-A_J_‘.._ _'c_'_"'__,,,_ i W it 1.0 1fvo
N: Multiply Lower: Multiply the number in the accumulator by the *A{"'s L8551 A b — -
number in location 0132, retaining the least-significant bits in the accum |41, £.2.2] i RS Jabtt [rf? 3 o
T caa > HAr Ia A -

= A2 ¥ y
. Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard
https://archive.org/details/bitsavers_royalPreciutineManualOct60 3213373

Here is a library routine provided by the vendor. Yes, library software was published on hand-written coding forms. That's how it was done with the first
generation of commercial computers.

B is the Bring instruction. Bring the contents of location 0115 to the accumulator.

C is Clear. Store the contents of the accumulator in memory, clearing the accumulator.

P is Print. Print an electric typewriter symbol. The symbol is denoted by the track number part of the address in an instruction word. When executing this
command, the computer has complete control over the typewriter functions, including decimal digits, letters, punctuation marks, shifts, tabs, carriage
return and any other operation the typewriter can perform. This permits complete flexibility in the format of the output, including simultaneous punching
on tape if desired.

| is Input from the typewriter.

H is Hold, that is, store the value to drum memory.

T is Test, an if-test jump.

U is Unconditional jump. In this case it’s the “else” part of the if.

S is Subtract. Subtract the contents of location 0029 from the accumulator, and retain the difference in the accumulator.

N is Multiply Lower. When you multiply a five-digit number by another five-digit number, you get a ten-digit number. It’s the same thing here. When you
multiply a 30-bit number by another 30-bit number, the result is up to 60 bits wide. The accumulator is only 31 bits wide (counting the sign bit), so the M
instruction keeps the upper half of the result, and the N instruction keeps the lower half of the result. So, here, we multiply the number in the accumulator
by the number in location 0132, retaining the least-significant bits in the accumulator.

https://archive.org/details/bitsavers_royalPreciutineManualOct60_3213373

DATA INPUT #1 SUBRCUTINR
(PROGRAM 11.08

FUNCTION:

To read o dooimal cunber from tape, convert to binary, scale to
the proper binal point location, snd store the word in » specified draw
location. For each nunber the following is punched on tape:

)3:,‘/ 1,510 _Acese 1. The deciwal point locstion of the nurber on tape,

e e g1 counting from right to left, (Cne decimal digit
4_._’.42.1; - - T MS‘MM aa 'P).
KFe 030" r"!:{ T. L. werd
6200 2. The binal point locatica desired for the as=ber

—d et to be placed cn drun. (Sign and two decimal

WS I AL Crig TR v digits designated as “gq%).
L Ty 00 mEl e P>7

Veoo A 3. The drun location to which the nusber iz to be
e - sent. (2 decimal digits for trock and 2 decimal

240,0,5, N B | digits for sector).

A ‘v E-'] H LD, s »
L | --L?‘ d F Tb ol L. The mumber to be entered (Seven deciral digits
TS Qlilf.si ...4 A % I plas l“n)-
. Mo, 2,321 | soenr V SELE defd 2
A
’ _&4_"‘ 3.3 _fotw.m.,.&w-&:.ju.u_i&.‘.d
62550 ol

el Ll 0
A 4[110 4 Ax" : J&s Y' &i{ rﬁ 49 ’LﬁL Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here’s the documentation for the library routine from the previous slide. The code on the left is copied from the previous slide. This is a data input
subroutine... You can see the decimal point is designated as P.

Flexowriter (1956)

Hexadecimal Notation is
0-9, F-G, J-K, Q-W
(not 0-9, A-F)

Paper Tape
Reader/Punch

“Simplified Programming”
means
“type directly to drum memory”
or
“type directly to paper tape”

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The paper tape punch and reader are on the left. Use the switches to turn the punch on or off. Hexadecimal notation was not yet standardized. The
numbers were 0-9, f-g, j—-k, g-w, not a-f. You can see the letter sequence on the keyboard. There is no one key. A lower-case L was used instead. And,
by the way, "simplified Programming" means "type directly to drum memory" or "type directly to paper tape."

Hexadecimal Digits (1956)
Decimal and Hexadecimal
Equivalents of Binary Numbers
Bina Hexadecimal Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 K}
0100 4 1
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 f 10
1011 (4 11
1100 J v 12
1101 “ 13
1110 q 14
1322 w 15

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

You thought you knew hex? Think again! The numbers were f, g, j, k, q, w. We’ll be seeing that a lot.

Flexowriter (1956)

The white keys are the machine op codes
(B-Bring, C-Clear, A-Add, S-Subtract, etc.)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

As you can see, this is quite developer-friendly. The machine instruction codes are the white keys.

Punching Tapes From Coding Sheets (1956)

1. Oady the "Progrms Input Codes® and *Jratructice® columma of the
codisg aheet are %o punched, with sppropriste atepe, JNever pusch
"lecation,” "Ceatants of Aadress,® or "Notea" columns,
V0 NG PRes 2, [Each entry co & line sust be followed by & ceediticasl stop coda=e
Sob Mo Trerres M. i bg Prepared Vy__z 'swdcoum, ayrbol ('), A 1line left blask must have the atep code

Prohlen Dava Tooer "2 '_l-ur
Trores irget g, Tratrwetion 3. Punch the "Frograa Inpot Cofes™ columen enly shea there is an entry
Codes WAL | e, Méress |l A the colunn, The "Program Irpat Codes™ sust be followed by the stop
260, . ! PT (")e This punching mast precede the punchirg of the "Inatruction®
i 1o column on the same line of the codirg sheet,
LN co— —— » '
e e B e L 1™ be leoding zeros need not be pumched. ALl cther serces must be punched,
e et SO %‘—M-'{ : B.0., 000130851 only 13085! need be pumched, ,0000017' must be punched
T 223 3 LTERR (- ,ml?'- Yor m59' panch m".
. 23] e Tisesel Bl ' 3
P a2k 4,'741_&,-.1 11ca 5. Censider brackets as containing serce. E.0., forl.... ... J¢
- A1 osl. . Fieewsl - *, only the stop code meed be panched, For Hl.. . Jv =
IR | abl . @ifes y /A . B J* puneh BOOOO',
H | o3 S;og.o b ST ;
5 Y B A 0 W2 Yot i Lbcdos
VDN W S V. N S TN R0 ML 2 —
e 10 Aﬂ;f.l‘l' J v o) | S&{F il 2
T
Lol oaal. . Eovs ' R oimencent] Dok P s frm L imad

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here is how you get your program, that you wrote out on paper, into the computer. Only the “program input codes” and...

Punching Tapes From Coding Sheets (1956)

%mmm-qhdmulmreuo. BO627" will appear as
'

T« The placirg of csrriage returrs is loft te the discreticn of the

person preparing the tape. Carriage returns de not l!!oc: u)n imput

Mo Precran %, Projared > Y ot operation. Wo hove arbitrarily placed a carrisge retum (&5) after
_ s ey e every & words on sach coding sheet.

Va0 e VT

Dava Toepr "4 '—Il'r-nyxﬂj‘:‘
g' TPttt on o, Ue A hesding msy precede a pumched prograr to identify the tape.
Codes WAL | o, aadress | address Arprthing except s atop code may be punched as a hesder., Then as the
be.o, ' '21 tape 4o fed throwgh the inmput reader the heading will print but will
Gad s b not affect the operaticn of the computer.

-~s -’ W — T — - e —

%“-M-ém‘-#‘q#‘“b’ e fESEE . 9. Bach tape sheuld be yerified after punching. This ean be done by
PRDREPESUD IS SSU-5 ¥ SDRPCC XY X % 4 U placisg the puached tapo in the resder and *listing® the tape bty the

‘

i bnB2ha o 2200 following process.

. 23l e Tisesen by

HEEArN B By ,«49741_1,;.{ Niza Tl a. Make sure "Cond. Stop® button on reader iz wp.

: | 0S| ., T,0e vl b. Wm’ "Start Mead® button.

L | gl . . wite e A - 0. Whes printing stops, depress spece bar.

t 1 -t oA d, Repeat steps b and ¢ until entire %ape iz printed.

s 23 Sid.0.0 % 4 (- 3¢

+ oA}, . L, B Bl Then the printing say be visuslly ohecked sgainst the coding sheets
bbb gt B B s A LTSN 1H for correctasss and presence of atop codes,

10 TR
PENHIREE § BBV 1 BRI wTCV Y

s)

Roimensni) Pok P s Lrim L 3sad]
Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

LGP-30 Instruction Set (1956)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The machine had 16 hardware instructions. All instructions were stored in memory. This was actually a big deal, and the sales brochures called this a
stored-memory computer.

Ed continues the story: | first met Mel when | went to work for the Royal McBee Computer Corp., a now-defunct subsidiary of the Royal typewriter company.

The firm manufactured the LGP-30, a small, cheap (by the standards of the day) drum-memory computer, and had just started to manufacture the
RPC-4000, a much-improved, bigger, better, faster--drum-memory computer.

Magnetic Drum Storage
(1951)

® Engineering Research Associates (ERA) of
St. Paul, Minnesota

® Elite navy code breakers in World War I
e Navy Lt. Bill Norris chosen CEO

® Founders in 1957 formed Control Data
Corporation (CDC)

e Seymour Cray became CDC chief designer

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is drum memory. The read heads are along the outside, and obviously don’t move. It’s the drum that moves, bringing its data to the read head, not
the other way around. This example was built in St. Paul by a company that could have become Silicon Valley but didn’t. At the end of World War Il, an elite
group of Navy code breakers created a company whose top-secret work helped to launch the world's computer industry. The company was called
Engineering Research Associates, and very few people knew its secrets. Most still don't. One of those code breakers was Bill Norris, a Navy Lieutenant. He
became CEO. After the company was bought out, Bill Norris and the other founders created Control Data. Seymour Cray joined a year later.

Magnetic-Core Memory (1955-1975)

“Cores cost too much, and
aren’t here to stay, anyway.”

That's why you haven't heard
of the company, or the
computer.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is a full rack of core memory. There is a coin in front for reference. The coin is about the size of a quarter. Ed continued, “Cores cost too much, and
aren’t here to stay, anyway.” That’s why you haven’t heard of the company, or the computer.

e Core memory:
o Quite expensive during Mel's time
® Hand-manufactured by skilled workers

e Drum memory was simpler to
manufacture

e Therefore cheaper

’ 7 7 g

L P _ @ 9 @ o_b/o_g £

® But much slower than Core Memory ‘ . / 4 /
2O AL AW AL

Magnetic-Core
Memory (1955-1975)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Core memory was quite expensive during Mel’s time because it had to be hand-manufactured by skilled workers. Drum memory was simpler to
manufacture, and therefore cheaper. But it was much slower than core memory.

RPC 4000 Electronic Computer
System (1960)

| had been hired to write a FORTRAN
compiler for this new marvel and Mel
was my guide to its wonders.

Mel didn’t approve of compilers.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

This looks to me like a Star Wars droid unit. In fact it looks like a droid that just survived a battle and hasn’t been cleaned up yet. The Librascope logo is
on the left, and then Control Data slapped their own name on the front. That probably means that Control Data bought a used droid, refurbished it, and

sold it for $10,000 or so, which was a huge discount. Ed continues: | had been hired to write a FORTRAN compiler for this new marvel and Mel was my
guide to its wonders. Mel didn’t approve of compilers.

INSTRUCTION WORD

address
lcommand|] track - - <} - - sector - - -

— - - - . - —————————

o~ —— -

|”If a program can't rewrite its own code,” he asked, “what good is it?” |

The LGP-30 gives the progrommer a unique interlaced pattern of word
oddresses which greatly simplify the reduction of memory access time. The stored
program operation of the computer makes it possible for a program to be self-
modifying, thus increasing flexibility still further.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

“If a program can’t rewrite its own code,” he asked, “what good is it?” At the time, programs were supposed to be self-modifying. Here’s what the sales
brochure says: The stored program operation of the computer makes it possible for a program to be self-modifying, thus increasing flexibility still
further.

Most Popular Program

® Hexadecimal

=
® Most popular program the - geges »
company owned iI"‘t 1‘!0

e Played blackjack with potential
customers at computer shows

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Mel had written, in hexadecimal, the most popular program the company owned. It ran on the LGP-30 and played blackjack with potential customers at
computer shows.

Blackjack &

Opening instructions of the LGP-30
Blackjack Program as typed by Mel
(Recovered from paper tape)

Note: Hexadecimal digits are
0-9, f-g, j-k, g-w

es/Games/bkjck.tx

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here’s what the beginning of the blackjack program looks like. Remember, hexadecimal notation was different then. Those are not the digits you seek.

ftp://ftp.informatik.uni-stuttgart.de/pub/cm/lgp30/papertapes/

v0402k00"

k2w83'k3278' £3154'q2k98 ' 22k78 q2qwj ' 22k54 ' 22k58" o
22k65'332w0 ' £32k8 ' 931w0 'w31q0 ' g2k24 'q2q83j ' j2k94" M O re B a C J a C
q2k03'22k68' 22k70 ' 22k50 ' 12k£8 ' 92kq4 'w2kqd ' g2k68 '

£2q68'12kk0 ' 12k£8 ' q2kq4 ' J2kE8'k2k88' 12kkd 'k2k83

33300 £3300'56£40656'q06627q' £2q00' 18" 2kk0 ' 11w20806 "

56140656 '56130656'56£40656'57230656' 56340656 ' 56330656 56440656 ' 56430656

28050406 '10640806'10750806' 10630806 q067£7q' q06627q ' q062£7q' q066£7q"

1000000800000 100008000 ' 80000004 ' 7q7q7q7q " Twwwwww3 400000

336wi543"

v0402900" v0403100" v0403400"
12k94 'w3lwj'g2q24 'w3293 'g2qlj ' 12wid ' £2q28'12k94" 42983 'k3278" £3130'100' 33300 £3300' 2030546 5£720306" RRRREE
£2q28'12kw0 ' £2q0' 12q78 ' 22938 ' 2240 12kk0 ' 92kw4 ' q067q7q' 13394 ' 33298 ' £3280' 13274 ' 92kw8 ' §3274 'w2qf4’ RRRRRRE
k2kk0'12q38' q2q83 ' J2q38' 2240 ' w2k64 'g2q38 'k2w83' 93204 '33300' £3300' 30180£52' 7£5£1806' 606067q k3274 'k3274" R
k2w83 ' £2q88'332w0 ' £3233'931q0" £2k03 '2k93 ' 131k4’ 13274 'w3394'g3268' 13278 'w2q83 'k3278'33300' £3300" R
w2w83'80092q23'81000'4' 81800 32q28' £2q68 k334" 307£6£46' LE4£0610'1608067q' 13278 g31kj ' J2k94 ' 33300 £3300° R
80300'58'81800'32q28" £2q68'k3274'33300' £3300" 1034087q'12k94 ' 33298 £3280' 33300 £3300'2q04047q'13278" prne
20187q7q'81800' 13273 ' q2q83 'k3273 ' £2qk8 ' 32q28 ' £2q68" g31w8'81000 k3273 k3273 'k2w53 ' 68" £32wd '80300" RN
g2w23j'q33g4' 33394 ' 92kw8 'w2q£d ' g2w60'80300' 10" 3'k3278'w3278'80700'33 ' £3194'80300'8"
2216w45q" 193k5632" 00000000"
v0402w00" v0403200" v0403500"
81800'12w5j 'q2q83 'k2w5j '32q28' £2q68' g2w3j 'q3274" £31§4'q2983 ' g3240'12q83 'w2w53 ' g3240' 33300 ' £3300" prrne
3327493068 ' £2wwB ' 13394 ' 92kw8 'q2kw0 ' £2qq8 '13274" 30180£07'726£6364'726£637q'80300' 13394 'w2qf4 'g33wd ' £33q8’ [RRRREE
92kw8 ' q2kw0 ' £2w20' 13274 ' 92kw8 ' q2kw0 ' £2wq8 ' ' 33300'£3300'30185£46'5£720306 ' q067q7q ' 1327433298 £3280" [RRRREE
33300'£3300'20106£08" 721£2£10'2608067q" 80000 ' 40000’ 92qw3 ' 80300'£3160'13278"q2q83 ' £3174 50 wwwwwwq8 ' ' [RRRREE
w2qwi'g2w90 ' £2q34'2k93 8180030 13394 g2wEd’ w2wid' g32£0 'w2wi4 ' g32g3 'w2wi4'g32j4'80q00" 24" [RRRREE
£2w30'92kw8 ' §33g4 'w2w94 ' g2wg8 ' £2w30' q2qf4 'k33g4" q2wj4'63103'q32g4'232g0 ' 81£00'200' £31g0' 80600" ERRRN
80300'28'81800' 12w53 ' q2q83 'k2w53 ' 32q28 £2q68 " £3295'80£00' £3293 ' 12w83 'q2q83 'k2w83 ' 13048 '63048" RRRREE
g2w43'q3274' 33274 ' 92kw8 'w2q£4 ' g3004 80300 133g4" 33048'72964'q3048' 33048 £2k23'400' 81000 £2q78" RRRREE
3£4wBTWE' 2w60k030" 00000000"
v0403000° v0403300" v0403600"
£3074'q2qwj 93010 £2ww8 'q2q83'g3033'332w0 ' £32k8" 1313 '933g0' £3303'w3393 'g3350 ' £3344'7g000000 ' 470000 " [RERRREX!
92w94 'w2w94 'g2ww8 ' 8100014 ' 81800 £2wj4 ' q3030" 4000'3w00'80068"3'4'4'13300"q3333"
93043 ' £3023'211g589£ ' q2qwi ' 93023 1327493060 £3025" £33£8'133§3'q3300' £33q0'q3318' §3313'73320'93324"
q2wj4 ' £2vq8 ' q2wi4 'k3274 ' £2ww8' 92kws ' 13394 'w2qEd’ q3328'k33g3 ' £3338'q3318' §3313' 7332093324 'q3328" RRRREE
g30£0'33300' £3300'20300£52' 7£5£7q7q ' k3394 'k33g4 ' £3130" k3393 'w3330'q3334' 'g3300' £33g3'100' 7000000 RRRRRRE
42983 'g30k4 ' 12q83 ‘w3273 'g30k4 ' 33300 £3300'20300£05" 13300'£33q0' 23300 £33g8'7q7q7q7q' 43' 13323 '80268" RRRREE
726£6364'726£637q' 12q78 'k2w83 ' £30w4 ' 13275 'w2qwj 'g3110" §3334'13313'£33k0'4' 63398 'w339§'g3363 ' £3395" RRRREE
33300'£3300'20302306' 6£721£2F ' 7£7q7q7q" 12q£4 'k33g4'13278" 233q4'£3193'13278 ' w2q83 'k3278'12q78 ' k2w8] '£3163" RRRREE
07q499gk3 " 00q03242" 00000000"

Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here’s more of the blackjack program. Move along, there’s nothing to see here.

Playing Blackjack

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The blackjack program’s effect was always dramatic. The LGP-30 booth was packed at every show, while the IBM salesmen stood around talking to each
other. Whether or not this actually sold computers was a question we never discussed.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is a standard Royal typewriter from the same time period. Notice the fabric ribbon has both black and red. That’s why there’s both red and black
typing on the output. The typist manually moves the selector from black to red and back. Also notice the keys to set and clear the hardware tabs.
That’s how the text on the right is lined up into columns. Also, if you ever get in an argument about “spaces versus tabs,” do remember that THAT battle
was decided more than a century ago. Business professionals used tabs and tab stops.

LGP-30 CPU Vacuum Tubes (1956)

=

Mel’s job was to re-write the blackjack program for the RPC-4000.
(Port? What does that even mean?)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

® One-plus-one addressing
® Each machine instruction contains:
° Operatlon code (e'g" Add) ELECTRONIC DATA PROCESSING SYSTEM

® Address of operand

e Address of next instruction to
execute

® This means every single instruction
was followed by a GO TO!

® Try explaining that to a PASCAL
programmer

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The new computer had a one-plus-one addressing scheme, in which each machine instruction, in addition to the operation code and the address of the
needed operand, had a second address that indicated where, on the revolving drum, the next instruction was located. In modern parlance, every single
instruction was followed by a GO TO! Try explaining that to a Pascal programmer.

Drum Is Not RAM!

® 1930s technology (invented 1932 in Austria)

XYYy

e Unlike RAM (Random Access Memory), you can't
simply read from any location at any time

E RSNy M

Unlike a spinning disc, read/write heads do not

move

r -
'y-
o -
vh-
N
g B
P -
. e
7 -
4
N
F-
')
-

ST 2FTYY
’
[]

N
"
~
3
8
5
‘ N
d
Pl

e The CPU loads your instructions directly from the

spinning drum

httP51//en.Wikipedia.org/wiki/Drumfmemory Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

| hope you’re getting the idea that drum memory was quite different. It was 1930s technology, invented in Austria in 1932. Unlike RAM (which is Random
Access Memory), you can’t simply read from any location at any time. Unlike a spinning disc, the read/write heads do not move. The CPU loads your

instructions directly from the spinning drum.

Read Out-Of-Sequence (1)

RPC-4000 drum speed is 3600 RPM (or 17 ms per revolution)

® CPU loads instruction from drum once it is under read head

ASLE .

® CPU then loads operand from drum (as specified in the
instruction)

42222 TyTm

‘AT,

® CPU then executes the instruction, which takes about the
same time as either of the above two steps

Ay

‘I.Dr-,. A

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The RPC-4000 drum speed is 3600 RPM (or 17 ms per revolution). The CPU loads each instruction from the drum once it is under the read head. The CPU
then loads that instruction’s operand from drum. The CPU then executes the instruction, which takes about the same time as either of the above two steps.

Read Out-Of-Sequence (2)

e |[f instructions and data were sequential, we'd be missing the
“window of opportunity” to read in the next item

e No such things as instruction or data buffers

AL A

® Drum is hard-wired to the CPU

e
‘-
-
"o
"

.=
- T
a5
- =
4

_ b
;-
ad
-

42222 TyTm

LT TVE

® Rather than “miss revolutions” when trying to read data, we
spread things around the drum based on revolution time

AW

‘.‘.-., W

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

If the instructions and data were a sequential stream on the drum, they would go by too fast for the CPU to handle. We’d be missing the “window of
opportunity” to read in the next item, because that next item would have already spun past the read head. There were no such things as instruction buffers
or data buffers. That drum is hard-wired to the CPU. So, rather than missing revolutions when trying to read data, we spread things around the drum

based on the drum’s revolution time.

-

Read Out-Of-Sequence (3)

e Example: Read instruction from Track O, Sector 0

(FTTHSTTRR

e By time we extract the data address from that instruction,
the read heads are coming up on Sector 3 of all tracks (all
tracks have read heads)

® Therefore Mel (who knows the timing) might specify Track 1,
Sector 3 as the data address

http://museum.ipsj.or.jp/computer/device/magnetic_drum/images/0006_02_l.jpg

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Let’s take an example to see how this works. For example, let’s read the instruction from Track 0, Sector 0. By the time we extract the data address from
that instruction, the drum has kept spinning along. The read heads are coming up on Sector 3 of all tracks. Remember, all tracks have read heads, so we’re
coming up on Sector 3 of any track. Therefore Mel, who knows the timing, might specify Track 1, Sector 3 as the data address.

Read Out-Of-Sequence (4)

e By time the CPU finishes executing the instruction, drum
sector 12 (let us suppose) is arriving at the read heads

e This is sector 12 of any track, because every track has its own
fixed, unmoving, read head

® Mel, knowing this, would have set the “next instruction”
address to Track 0, Sector 12

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

By time the CPU finishes executing the instruction, drum sector 12 (let us suppose) is arriving at the read heads. This is sector 12 of any track, because
every track has its own fixed, unmoving, read head. Mel, knowing this, would have set the “next instruction” address to Track 0, Sector 12.

That's Why We Can’t Have Nice Things!

® This is why we can’t have nice normal
sequential programs with drum memory

® The drum is like getting on a ski lift that
never stops: You time it right, or you
splash and wait to try again

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is why we can’t have nice normal sequential programs with drum memory. The drum is like getting on a ski lift that never stops: You time it right, or
you splash and wait to try again.

(New) Blackjack

RPC-4000

Program W1-01.0

BLACKJACK GAME
(By Mel Kaye of Librascope Inc,)

This program is designed to simulate a game of Blackjack between one
player (the machine operator) and a dealer (the computer). This write-
up is intended to provide the player with the information necessary to
play the game.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Blackjack (1960) Rpc_4000 ==l

g N %
e Program W1-01.0 {f ‘__13
(By Mel XKaye of Librascope Inc,) O,

Before playing Blackjack, set 4 typewriter tab stops to provide for
4 columns of printing, The following is the suggested column lengths
(left to right) and their content,

1. 15 spaces, This column will cont S _
the player's responses, :‘r. Jee G- ooy,

2, 12 spaces, This column will cont tofal - 17 vl = & soore = ~30,5
their numeric total or an alphabe

3. 12 spaces, This column will cont "=

cards and their numeric total or S
Slackleck wmtal - U o0y » »3lX

4. 12 spaces. This column will contain the score at the end of

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

56

Blackjack User Interface (1960) AP

BLACKJACK GAME
(By Mel Xaye of Librascope Inc,)

The standard RPC-4000 bootstrap loading procedure will load the hexa-
decimal program tape (no check sum) into locations 00000 through 00928,
The program begins at location 00000. After the tape is input, the
program selects the typewriter for input and output and then prints
"How much do you bet?" Type the amount of your bet in pennies and
depress the stop code. e.g., 150* bets $1.50,

Next, the program prints "Shuffling”, Depress SENSE SWITCH 1 to ter-
minate the shuffling procedure, The program then prints "Cut" and
simulates cutting the deck until SENSE SWITCH 1 is raised. The program
then deals cards and the game proceeds,

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Blackjack User Interface (1960) AP

BLACKJACK GAME
(By Mel Xaye of Librascope Inc,)

All questions from the program must be answered on the typewriter key-
board, and must be followed by depressing the stop code (*) key., Per-
missible affirmative answers are: yes*, ok*, si*, ja*, oui*, Permis-
sible negative answers are: no¥*, non*, nein* nope*, * (only the stop
code).

If the player's first two cards total 11, the program prints "Press?"
An affirmative answer will cause the program to deal the player one
card only, and to double the amount of bet for this hand. Any non-
affirmative answer to Press causes the program to proceed normally
and ask whether the player wants a card.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Blackjack Program’s Rules of Play (1960)

PLAYING CQONVENTIONS

1. Player's Blackjack pays double,
[}

Cheat Mode:
Remember this, it’s part of the story!

7. Blackjack by either dealer or player will cauge the hand to end
and the new score to be printed in column 4,

[}

[]
6. The amount of bet will be
SWITCH 8 is depressed. A

8.0 If SENSE SWITCH 32 is depressed, there is a better than normal chance
of an ace being dealt as the player's first card.

Like any game, the blackjack program had its own rules of play. Take a look at the final rule: If SENSE SWITCH 32 is depressed, there is a better than
normal chance of an ace being dealt as the player’s first card. We’ll be coming back to this.

LGP-30 (1956)

e On RPC-4000, Mel could optimize his
code:

® | ocate instructions on the drum
® As one instruction finished,

® Next just arriving at read head

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

This is the drum memory on the far left. The CPU is adjacent, as close as possible. Here is the oscilloscope tube. You can see the electric typewriter, the
Flexowriter. Over on the right is optional equipment, the high speed tape punch.

Mel loved the RPC-4000 because he could optimize his code: that is, locate instructions on the drum so that just as one finished its job, the next would be
just arriving at the “read head” and available for immediate execution.

ROAR: Royal Optimizer & Assembly Routine

There was a program to do that job,
an “optimizing assembler,” but Mel
refused to use it.

“You never know where it's going to put things,”
he explained, “so you'd have to use separate
constants.”

It was a long time before | understood that remark.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

There was a program to do that job, an “optimizing assembler” called ROAR, but Mel refused to use it.
“You never know where it’s going to put things,” he explained, “so you’d have to use separate constants.” It was a long time before | understood that
remark.

ROAR Output

The output of ROAR consists of a machine language tape of the assembled

program, and a printed copy of the assemblod program along with a repro-

duction of the input. These provide the programmer with & ready means

of loading this program as well as a complete record for error correction ROAR output is a hole-punched
and program checkout. - paper tape and machine-language

printout.
That is how you watch for errors and
do program checkout.

v0402k00’'k2w87’

k3278 '£3154"

q2k98’22k78 " 'g2qwj’

22k54'22k58"
T T——"

ROAR output is a hole-punched paper tape and machine-language printout. THAT is how you watch for errors and do program checkout. Getting your
program to run was a slow process.

RPC-4000 Instruction Set (1960)

ORDER ORDER D ADORZSS OPERATION EFFECT ON

SYISL NOMBER ... sECTOR v L X

MLT oo 000 Any BALT N.U. N.U. Index

SNS 00 #0000 Any SENSE Index
No operation, Turn the Branch Control N.U. N.U.

on 4f a track bit (or more) corresponds
to & depressed sense switch on the
console. The track 64 bit will always
tura the Branch Coatrel on,

e o A B COMPARE X BQUAL N.U. N.U. D addr,
1. Turn the BC off. compared
2. Compare the bits of the D address Indexing
with the corresponding bits of the is re-
X register. dundent
3. If equal, turm DC om,
RAU 02 A L] RESET - ADD UPPER
Replace the contents of U with the CAR) 20 N.U, Index
contents of memory locatica A B
RAL 03 A B RESET « ADD LOWER
Replace the comtents of [with the N.JU, C(AB)»L Index

contents of memory locatiom AN

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Since Mel knew the numerical value of every operation code, and assigned his own drum addresses, every instruction he wrote could also be considered a
numerical constant.

RPC-4000 Instruction Set (1960)

iR ALEE D ACRss COTAATTI O™ YRcT On
EOML MK . caare v 1 X
m P2 Ly » STORE Urrea Steced,

Replace the contents of mesory waltered ».0. Irdax

Tocation AD with the coctents of the
PeE Mowmslater| Teave the wpper

echarged,
m " A L] STORE LOvER xu, Stored Index
fsplace the contents of semicy Joamn WAltered

Len AB with the contents of the lower;
Leave 1he lower wechanged.

cw e A L] CLEAL Uriex ClieCiA3) N0, Index
Mpisce the contents of memecy location sero-eC(V)
AR vith tha ontents of The Woer acemm
wistor, thenm clear tha Sppar o marces.

as b A B CLEXAR LOVEX U, CiL)elin) Index
Seplete tha contents of memory locatiom mreeCil)
AD vith the contents of tha lower, thes
ST The Lowwr 10 rerese

aAfny L A - ASD urma ClUYCiAn) n.v, Indes
ASE Alperadaly the aontests of mamery -»Ci%)
location ABD 1o the certents of the
W, Jeaving 130 v 1 1he wWper.
Az overtlow will curs BC on,

AL % A » ALD LNea B.v, C(L) » Clm) Indax
A algedrately the contents of »C0L)
ooty 10081108 AN T4 134 dimients of
the lower, leaving e swm in t2e lowes,
A avartiovw wiil tem M en.

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

He could pick up an earlier “add” instruction, say, and multiply by it, if it had the right numeric value. His code was not easy for someone else to modify.

NOW! & REW CONCEM
N CONPUTER DESIEN

Y e Hand Optimized

THE FOLLY TRANSISTORIZLD

RPC-4000 _#
ELECTRONIC P
COMPUTING

SYSTEN

® Mel's always ran faster
e “Top-down” design not invented yet

® Optimize innermost parts of loops first, first
choice of optimum addresses on the drum

® Optimizing assembler not smart enough

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

| compared Mel’s hand-optimized programs with the same code massaged by the optimizing assembler program, and Mel’s always ran faster. That was
because the “top-down” method of program design hadn’t been invented yet, and Mel wouldn’t have used it anyway. He wrote the innermost parts of his
program loops first, so they would get first choice of the optimum address locations on the drum. The optimizing assembler wasn’t smart enough to do it

that way.

Most Pessimum

Flexowriter required a delay between output characters
® Placed instructions just past the read head
® “Optimum” is absolute term

® These locations are “most pessimum”

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Mel never wrote time-delay loops, either, even when the balky Flexowriter required a delay between output characters to work right.

He just located instructions on the drum so each successive one was just past the read head when it was needed; the drum had to execute another
complete revolution to find the next instruction. He coined an unforgettable term for this procedure.

Although “optimum” is an absolute term, like “unique,” it became common verbal practice to make it relative: “not quite optimum” or “less optimum” or
“not very optimum.” Mel called the maximum time-delay locations the “most pessimum.”

Times Change

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Change Request

whe
ae

Finished and got it to run

o
.

g

1 Change Request from sales department
wad - wial - 23 "oove - -31,10

s "' ® Sometimes the customers lost
o

® Change the odds and let the Wookie win

L el - L0 e Bk

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

After he finished the blackjack program and got it to run (“Even the initializer is optimized,” he said proudly), he got a Change Request from the sales
department.

The program used an elegant (optimized) random number generator to shuffle the “cards” and deal from the “deck,” and some of the salesmen thought it
was too fair, since sometimes the customers lost.

They wanted Mel to modify the program so, at the setting of a sense switch on the console, they could change the odds and let the Wookie win.

Cheat Mode

The others came out of the ship, on my advice: evidence
of any mistrust at this point would humiliate the
Karhidish escort, impugning their shifgrethor.

e Mel balked —The Left Hand of Darkness by Ursula K. Le Guin (1969)

® Impugned his shifgrethor, so refused
e Mel gave in, but got the test wrong
® Program would cheat, winning every time

o Mel was delighted with this and refused to fix it

8, 1f SENSE SWITCH 32 is depressed, there is a better than normal chance
of an ace being dealt as the player's first card,

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Mel balked. He felt this was patently dishonest, which it was, and that it impinged on his personal integrity as a programmer, which it did, so he refused to
do it.

The Head Salesman talked to Mel, as did the Big Boss and, at the boss’s urging, a few Fellow Programmers. Mel finally gave in and wrote the code, but he
got the test backwards, and, when the switch was turned on, the program would cheat, winning every time.

Mel was delighted with this, claiming his subconscious was uncontrollably ethical, and adamantly refused to fix it.

Greener Pa$ture$

e Mel left the company for greener e See if | could find the test and reverse it
pa$ture$

® Tracking Mel’s code was a real
® Big Boss asked me to look at the code adventure

» APA a9

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

After Mel had left the company for greener pa$ture$, the Big Boss asked me to look at the code and see if | could find the test and reverse it. Somewhat
reluctantly, | agreed to look. Tracking Mel’s code was a real adventure.

Programming Is An Art Form

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

| have often felt that programming is an art form, whose real value can only be appreciated by another versed in the same arcane art;
there are lovely gems and brilliant coups hidden from human view and admiration, sometimes forever, by the very nature of the process.

You Can Learn A Lot About An Individual

| T

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnare d @ewbarnar d

You can learn a lot about an individual just by reading through his or her code, even in hexadecimal. Mel was, | think, an unsung genius.

An Innocent Loop

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Perhaps my greatest shock came when | found an innocent loop that had no test in it. No test. None.

Infinite Loop

<?php

sarray = [3.1, 41, 59, 26, 53];
3 $total = 0;
4 $index = 0;

while (true) { $total += $array([$index++]; }

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Common sense said it had to be a closed loop, where the program would circle, forever, endlessly. Program control passed right through it, however, and
safely out the other side. It took me two weeks to figure out.
The RPC-4000 computer had a really modern facility called an index register. It allowed the programmer to write a program loop that used an indexed

instruction inside; each time through, the number in the index register was added to the address of that instruction, so it would refer to the next datum in
a series. In other words, we are indexing through an array.

Index Register

THE INDEX REGISTER

The INDEX Register performs several important functions in the RPC-4000,
Its primary use is for address modification and, for this purpose, bits
S thru 17 of the INDEX Register serve to hold a value by which the Data-
address Field of an instruction may be incremented, This incremental

value may be placed in the INDEX Register by means of a Load Index (LDX)

instruction, and can be used by including an Index Tag in the appropriate
instruction,

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

He had only to increment the index register each time through. Mel never used it.
Instead, he would pull the instruction into a machine register, add one to its address, and store it back. He would then execute the modified instruction
right from the register.

The loop was written so this additional execution time was taken into account—just as the instruction finished, the next one was right under the drum’s
read head, ready to go. But the loop had no test in it.

IF indesing Lo specified for thls inetrwetion, & Dats Value of 2e/e will
form on the Bramd Controd, regardleas of the (ndex value. This occwrs
Decavse The rero Dute Valow, wien indesad, Becomes Identicst with the
Index Valur, Comversely, any Dats Valer ather 10an dere wiki Yern off
he Braned Conteol, regardivns of the Indes Talur, (RIamach &5 S8y Soe s
aere value, when (Adened, Deconen groster thaa the Inles Yolere,
® |ndex flag set Minimen 1l eeeeeerd ward s
Oveuflow Not a factor
Brareh Conteol CORditiomally set "Oa™ o “OOI*
® Yet Mel never used the Index Dl Ai¥otintesrYem
Register 1
INLTRUCHON
T e
® The carry adds one to the s ["f,:_f'f{f::.] T j
operation code | J I :
Ol 469 o e nots
. e F + RGeS TIR
® Turns the instruction into a l] l]
Jump instruction T '
® Next instruction at 000 00 v ™ Ant Teey
MIO:“.G SEANTCALY
~e
Al NLXT INRTRUCION

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The vital clue came when | noticed the index register bit, the bit that lay between the address and the operation code in the instruction word, was turned
on—yet Mel never used the index register, leaving it zero all the time. When the light went on it nearly blinded me.

He had located the data he was working on near the top of memory—the largest locations the instructions could address—so, after the last datum was
handled, incrementing the instruction address would make it overflow.

The carry would add one to the operation code, changing it to the next one in the instruction set: a jump instruction. Sure enough, the next program
instruction was in address location zero, and the program went happily on its way.

An Insane Optimization

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Mel clearly understood the inner workings of drum memory and the processor extremely well. He undoubtedly learned the timings with an oscilloscope
and circuit diagrams and a lot of poking around. He likely built a collection of tricks to squeeze maximum performance. Even through the 1980s, a Real
Programmer could beat every compiler or optimizing assembler.

LGP-30 Restoration in Stuttgart (1999)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

| haven’t kept in touch with Mel, so | don’t know if he ever gave in to the flood of change that has washed over programming techniques since those long-
gone days. | like to think he didn’t.

LGP-30 Restoration in Stuttgart (1999)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

In any event, | was impressed enough that | quit looking for the offending test, telling the Big Boss | couldn’t find it. He didn’t seem surprised.

Librazette (August 1956)

ENGINEERING -

LIBRASCOPES MURAL ROOM became s study hall for w ADMINISTRATIVE—
1LPG-30 p roflmmm the week of July “ Stadents participating = Ells Mariduch
this Cirst trainiag school for LPG-30 customers (ncluded (seated L to r.) Marinello
Bill Hopper, M Cornell and Chuck Rue, Convair-Pomoma; Jods ERING-
onmn Comvvalr. Dieges R, J, Bibbing, Link Avistion: K. A Murst, COMMERCIAL
D, Parkhurst, C, 8 Kikushima and Ides J. Remers, Coavalr-San Meivin Kaye
30 George Kcodmt, Conveir<-Pomons; Chack Ray, Calsech; and ENGINEERING
Willlam Clayten, Nationa) S«umy . Standing (L %o r.) sre Fred SPECIAL ngvm_
Flannell, class instroctor and assdstant sales manager of Noyal-Mcllee: Melvin Smoidler
and Reoyal-McBee Agplications hoo«n Buad Hukn Jack Behr and IAGIN! uop_.
Mel Kaye Fhoto by Duggan)] creland

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

When | left the company, the blackjack program would still cheat if you turned on the right sense switch, and | think that’s how it should be.
comfortable hacking up the code of a Real Programmer.

| didn’t feel

Side Note: The Butterfly Effect (1961)

Edward Lorenz (Ed #4):
The Butterfly Effect
was created on a
Royal-McBee LGP-30

In 1961, Lorenz was running a numerical computer model to
redo a weather prediction from the middle of the previous
run as a shortcut. He entered the initial condition 0.506 from
the printout instead of entering the full precision 0.506127
value. The result was a completely different weather scenario.

Fortunately, Lorenz had an ace in the hole: a primitive personal
computer called a Roval-McBee LGP -30. This desk-sized behemoth was
built from vacuum tubes and had a computing power comparable to | 100 Bl Lo, o
a modern programmable pocket calculator. All the same, the Royal [™ ™"
McBee was capable of solving a set of weather equations involving a
dozen or more variables, time step by time step, printing out a list of
updated variables every 10 seconds. In principle, the calculation was just

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Finally, that brings us up to today.

“Sard | vaei 1 “Yiase &

Qur Timeline 7z

B LQ LIXRTT TR IR
4 1

i et It —

Vi |

: e
am oy e Trere]

S8 jl
i

L

|

From the Librascope
LGP-30 Schematics

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

https://archive.org/details/bitsavers_royalPreciatics1959_26037699

Counting Eds

® Let's put our Eds together: Ed #1, Ed #2, Ed #3, and Ed #4
® One of us (at least!) was a Real Programmer...

® What more can you learn from me?

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

“The Story of Mel” Explained

The first thing | do in interviewing a
candidate is determine what type of
engineer they are. Not that there is anything
wrong with journeyman programmers who
write the glue for existing API’s. But
someone who gets it fundamentally is a
huge asset to any organization.

—James Seibel (shared with permission)
Author of “The Story of Mel’ Explained”
https://en.wikipedia.org/wiki/The Story of Mel

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

James Seibel wrote the official explanation for The Story of Mel and inspired this talk. He’s now a project manager. This is what he explained to me, and
gave me permission to share with all of you.

https://en.wikipedia.org/wiki/The_Story_of_Mel

The Preparatory Path

® Parisa Tabriz (seated) heads Google's
“Department of Chromeland Security”

® She wrote “So you want to work in security?”
article

® In explaining “There is no single, standard, or
preparatory path” she writes...

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Parisa Tabriz is head of the security team for Google Chrome. A lot of people ask her how to get into “infosec,” so she wrote an essay, “So you want to
work in security?” She explains that there is no single, standard, or preparatory path.

How Computers and Software Work

Independent of how you acquire it, you’ll

benefit from having a strong understanding

of applied computer science, or how
computers and software work.

—Parisa Tabriz

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Layers of Abstraction

Much of applied computer science is about
solving problems with layers of abstraction,
and security is often about finding the
flawed assumptions in those abstractions...
and then figuring out how to best fix (or
exploit) them.

—Parisa Tabriz (shared with permission)

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

In other words, there’s real value in knowing your stuff.

My Own Example: From the Inside Out

-

e Cray mainframe being wired
together by hand

® CRAY-1 has 60 miles of
twisted-pair wire

® Each wireis 1, 2, or 3 feet
long

® CRAY-1 built in a circle to
reduce wire lengths across

the backplane
\J

i AN

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

All Cray Research images scanned from my personal collection

Let’s finish with my own example. This is the CRAY-1 supercomputer, from the inside out. This the Cray mainframe being wired together by hand. The
CRAY-1 has 60 miles of twisted-pair wire. Each wire is precisely 1, 2, or 3 feet long. The CRAY-1 was built in a circle to reduce wire lengths across the
backplane.

CRAY-1 CPU (1977)

Scalar Registers Scalar Functional Units
Si = Sj & Sk
S3=51&S2

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

It’s too small to read, but the CRAY-1 CPU block diagram is on the right. Most of us could draw the thing from memory, any time. | took the middle part
and made the diagram on the left. So what’s the point?

Logical Product (AND)

PHP eqUivaIent: $53 - $S1 & $52; When you understand

computers (hardware) and
software, you'll intuitively
understand the subtleties of

A logical product is the AND function:

operand one 1010 PHP and MySQL
operand two 1100
result 1000

Examine each bit position for operand 1 and operand 2
- When both area 1, resultis a 1
Otherwise resultisa 0

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

The CRAY-1 scalar logical units do the same thing as the PHP bitwise operators. If you know one, you know the other. When you understand computers,
that is, hardware AND software, you’ll intuitively understand the subtleties of PHP and MySQL.

CRAY-1 Functional Unit Times

FUNCTIONAL UNITS Knowing the CRAY-1 Functional Unit times,
A in clock periods, meant that we could beat
Pusctionat Unis (E1ech Preiod IRs)rwet s the FORTRAN compiler every time, just s LIRS
iddress Iateger add : ST] like Mel beat the optimizing assembler | i

Address Integer sultiply . o
FOANteger M] AR, '

I
1

i 1 CAL
y M
Scalar pep/parity’ ' ST |
- | ENCE
Fector smteger add 5 154) -4
Tector logical 2 14 e, 3 i -_—
Yestor ahifln ' 10 ' d
Floating pelst adé 5 081, S) | & v ¥
Floating polst saltiply r sl .’ 1
Floating peist seciprecsl " o P
wwily walar) n" I \
s ’ or) >
One technique was to take the FORTRAN [4 Copyrght™ 170, Y77, 1970 1979 by CRAY RESEARCH. INC
niy etk vecter pepalat | compiler output and rewrite the innermost

loops to take better advantage of the BlOCK mm OF Rislmns

CRAY-1 CPU'’s resources

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Remember we looked at the tricky access times with drum memory? The CRAY-1 has something similar. There are a dozen functional units, not to mention
memory bank access times, that all have different timing. The CRAY-1, which is a single CPU, could literally be running a half-dozen instructions
simultaneously, with instruction results arriving at different times. Knowing the CRAY-1 Functional Unit times, in clock periods, meant that we could beat
the FORTRAN compiler every time, just like Mel beat the optimizing assembler. One technique, for example, was to take the FORTRAN compiler output and
rewrite the innermost loops to take better advantage of the CRAY-1 CPU’s resources.

“All functional units can operate
concurrently so that in addition to
the benefits of pipelining (each
unit can be driven at a result rate
of 1 per clock period), there is
also parallelism across the units.”

Scalar Regisiers Scatar Functional Units

Scalar Add is 3 Clock Period (CP):
CP 1: SO = S1 + S2 (Operands arrive at Scalar Add Functional Unit)
CP 2: S3 = S4 + S5 (Scalar Add takes new operands every CP)
CP 3: S6 = S1 - S5 (Operands immediately available for next instruction)
CP 4: Result of S1 + S2 available in SO@

. . This helps understand when results
CP 5: Resu-l.t O'F S4 + SS avallable in S3 arrive out of order, and asynchronous
CP 6: Result of S1 - S5 available in S6 programming in general

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Here’s an example of overlapping add instructions. Yes, this is machine-language programming, just like Mel. This kind of experience helps you
understand pipelining. This helps you understand what’s happening when results arrive out of order, or even asynchronous programming in general.

-

Ml From the Librascope
LGP-30 Schematics

Our Timeline

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

https://archive.org/details/bitsavers_royalPreciatics1959_26037699

Warming Up
The LGP-30

Uploaded on Dec 8, 2008
The LGP 30 computer is a computer made of valves, diodes and a drum memory

is machine is from 19581 is located at the museum of the computer sclence
faculty of the university of Stuttgart, Germany. The computer is in a fully
functional state

in this clip, the machineg is shown starting up and doing SOme work
51 10 9@t an imagination what that iond of maching icoked and feeled like

For further nformation (in German), 9o 1o
hetp/computermuseum. informatik uni

Category Science & Teonology

Ucense Standard Yoo Tube L

https://www.youtube.com/watch?v=7WaYYNUCWMY

cmse

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard

Summary

e Computers have changed, thank goodness

® Computer programming is still an art—and a
science

® |'ve beaten the CRAY-1 assembler with hand
coding; those lessons carry forward

® Find your awesome: | just showed you mine! CRAY-1 in Deutches Museum
by Clemens Pfeiffer

95

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

Computers have changed, thank goodness. Computer programming is still an art—and a science. This is not about me, but | have beaten the CRAY-1
assembler with hand coding; those lessons do carry forward. Find your awesome: | just showed you mine!

Thank You

Ed Barnard, InboxDollars.com

Twitter: @ewbarnard

Slide deck and links to more reading:

® Please rate this talk: https://joind.in/talk/
c19c4

Computing Past: Mel, The Realest Programmer of All — #phptek 2017 by Ed Barnard @ewbarnard

http://InboxDollars.com
http://otscripts.com/computing-past-mel-the-realest-programmer-of-all/
http://otscripts.com/computing-past-mel-the-realest-programmer-of-all/
https://joind.in/talk/c19c4
https://joind.in/talk/c19c4

